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28 November 2005 Doc\academic\errata plus_3rdprt 
 

ERRATA1  
for the third and fourth printings of 

Doppler Radar and Weather Observations, Second Edition-1993 
Richard J. Doviak and Dusan S. Zrnic’ 

Academic Press, Inc., San Diego, 562 pp. 
ISBN 0_12_221422_6. 

 
Page Para. Line Remarks:  Paragraph 0 is any paragraph started on a previous page that 

carries over to the current page. A sequence of dots is used to indicate a 
logical continuation to existing words in the textbook (e.g., see errata on 
pp.14, 76, paragraph 3 on p. 108, etc.) 

 
 
xix  θ modify definition to read: “is the zenith angle (Fig. 3.1); also the angle 

from the axis of a circularly symmetric beam (p. 34); also potential energy 
 
14 2 2 change to read: “…index n = c/v with height (or, because the relative 

permeability µr of air is unity, on the change of relative permittivity, εr = 
ε/εo = n2, with height).  

 
17 1 2-6 line 2, change “T=300 K” to “T=290 K”; line 4, change this equation to 

read: N ≈ 0.268×(103 + 1.66×102) ≈ 312; and line 6 change “1.000300” to 
“1.000312”. 

 
30 2 9 replace the italicized “o” from the first entry of the word “oscillator” with 

a regular “o”, but italicize the  “o” in the second entry of the word 
“oscillator” 

 
 3 7 delete the parenthetical phrase 
 
34 Eqs.3.2 replace D with Da 
 
35 1 9 at the end of the last sentence add: with origin at the scatterer. 
 
 2 10 the equation on this line should read: 
 
   ( )σ σ ψ θ π θ θb bm= −1 22 2 2 4 4sin / sin cos [( / ) cos ] / sin   
 

                                                 
1 Updates to the errata are periodically posted on NSSL’s website at nssl.noaa.gov.  Click the links to Scientific 
Publications, Recent Books, and Errata 2nd edition, 3rd and 4th printings. Also posted are Supplements that clarify or 
extend the book text. 
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 Eq.(3.6) and on the line after this equation, change “Km” to “Kw” 
 
36 0 7 delete “|Km|2 ≡” 
 
  9 change the end of this line to read: “Ice water has a |Kw|2≡” 
 
40 Eq.(3.14b) replace subscript “m” with “w” 
 
47 Table 3.1 change title to read: “The next generation radar, NEXRAD (WSR-88D), 

Specifications” 
   change “Beam width” to “Beamwidth” 
   change footnote b to read: “Initially the first several radars transmitted 

circularly polarized waves, but now all transmit linearly polarized waves”. 
Change footnote c to read: “Transmitted power, antenna gain, and receiver 
noise power are referenced to the antenna port, and a 3 dB filter 
bandwidth of 0.63 MHZ is assumed. 

 
61 Eq.(3.40b) place ±  before va 

 
 0 14 last line change to “velocity limits (Chapter 7).” 
 
68 3 8 change to read as: “or expected power E[P(τs)].” 
 
68-69 4 1,10,12 change “ P s( )τ ” on these three lines to “E[P(τs)]”  
   
71  Eqs.(4.4a,b) insert (1/ 2  ) in front of the sum sign in each of these equations 
 
 3 6 replace “p. 418” with “p. 498”. 
 
 Eq. (4.6) delete the first “2” 
 
72 0 4 change P s( )τ to E[P(τs)]  
 
 2 1 change P s( )τ to E[P(τs)]  
 
  3 remove footnote 
 
73 Eq. (4.11) change “ P( )r0 ” to “E[P(r0)]”. 
 
74-75 Eqs. (4.12), (4.14), (4.16):   change “ P( )r0 ” to “E[P(r0)]”. 
 
75 1 6 change to “G(0) =1” 
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 2 18 change “ P( )r0 ” to “E[P(r0)]”. 
 
76   Fig.4.5  change second sentence in caption to read:  “The broad arrow indicates 

sliding of....” 
 
82 Eq.(4.31) delete the subscript “w” on Z 
 

Eq.(4.32) delete the subscript “w” on Z 
 
 Eq. (4.34) change “ P( )r0 ” to “E[P(r0)]”. 
 
 Eq. (4.35) change “ P( )mw ” to “E[P(mw)]” 
 

1 9 should read: “.. is the reflectivity factor of spheres.” 
 
83 Eq.(4.38) subscript “τ” should be the same size as in Eq.(4.37). 
 
84 Eq. (4.39) change “ P( )r0 ” to “E[P(r0)]”. 
 
85 Problem 4.1 change “ P ” to “E[P]” in two places. 
 
108 1 1 change “stationary” to “steady”  
 
 1 11 change “ dP ” to “E[dP]”. 
 
 Eq. (5.42) change “ dP v( ) ” to “E[dP(v)] 
 
  15 change “ P v( , )r0 ” to” E P v[ ( , )]∆ r0 ”  

 
 Eq.(5.43) change “ P v( , )r0 ” to” E P v[ ( , )]∆ r0 ” 
 
 3 2-3 change to read: “…..by new ones having different spatial configurations, 

the estimates $( , )S vor of …” 
 

109 Eq.(5.45) change “ P( )r0 ” to “ E P[ (r0)]” 
 
 4 1 add subscript “I” to η  so it reads as “ηI ( )r0 ”  
 
 Eq.(5.46a) add subscript “I” to η   on the left side of this equation. 

 
   Change footnote “4” to read: “…denotes a weighted spatial average.” 
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113 1 1-4 change to read: “Assume scatterer velocity is the sum of steady vs and 
turbulent vt(r,t) wind components. Each contributes to the width of the 
power spectrum (even uniform wind contributes to the width because 
radial velocities vary across V6; steady wind also brings new....” 

 
 2, 3 10, 3 delete the sentences beginning on line 10 in paragraph 2 with 

“Furthermore, we assume...” and ending in paragraph 3, line 3 with 
“...scatterer’s axis of symmetry).”  

 
 Eq. (5.59a) change to: 
 
R mT E V V mT

E F A F mT A mT j v mT
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s s s s
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Following this equation retype the text up to and including Eq. (5.59c) as follows:  
 
The expectation in Eq. (5.59a) includes the ensemble of statistically stationary and homogeneous 
turbulent velocity fields.  The expectations of the off-diagonal terms of the double sum are zero 
because the phases (φi –φk ) are uniformly distributed across 2π; thus the double sum reduces to a 
single one.  To simplify further analysis, assume that the weighted scatterer’s cross section FkAk 
is independent of vk, and that Fk does not change appreciably [i.e., Fk(0)≈ Fk(mTs)] while the 
scatterer moves during the time mTs.  Furthermore, assume Ak varies randomly in time (i.e., a 
hydrometeor may oscillate or change its orientation relative to the electric field).  Thus Eq. 
(5.59a) reduces to 
 

R mT R mT F E j v mTs k s k k s
k

( ) ( )| | [exp{ / }]= −∑ 2 4π λ     (5.59b) 

where 
 
  )]()0([)( *

skksk mTAAEmTR =  
 
Because R(0) is proportional to the expected power E[P],  and because 
 
   E P Ibk k

k
[ ( )] ( , )r r r0 0= ∑ σ           (5.59c) 

 
114 2 2-4 modify to read: “...mechanisms in Eq. (5.59b) act through product terms.  

Furthermore, the kth scatterer’s radial velocity vk can be expressed as the 
sum of the velocities due to steady and turbulent winds that move the 
scatterer from one range position...” 
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6-9 delete these lines and replace with: 

  “…Eq. (5.59b), the velocities vs(r) and vt(r, t) associated with steady and 
turbulent winds can each be placed into separate exponential functions 
that multiply one another.  Thus the expectation of the product can be 
expressed by the product of the exponential containing vs(r) and the 
expectation of the exponential function containing vt(r, t); these 
exponential functions are correlation functions. The Fourier transform of 
R(mTs), giving the composite spectrum S(f), can then be expressed as a 
convolution of the spectra associated with each of the three correlation 
functions.  There are other de-correlating mechanisms (e.g., differential 
terminal velocities, antenna motion, etc.,) that increase the number of 
correlation functions and spectra to be convolved.  It is shown that, ….” 

 
115 Eq. (5.60) add a hat above “S” to read as “ $S ” in the three places it appears. 
 
 3 1 “R” in “Rk” should be italicized to read “Rk” 
 
  9 change “Eq. (5.59a)” to “Eq. (5.59b)” 
 
  14 Change these lines and Eqs. (5.64) to read: “Because the correlation 

coefficient can be related to the normalized power spectrum Sn(f) by using 
Eq. (5.19), and because the Doppler shift f = -2v/λ, ρ(mTs) can be 
expressed as  

 

   ρ
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116 0 1-4 change these lines to read: where S vn

f( ) ( / )−2 λ is the normalized power 
spectrum in the frequency domain folded about zero, Sn(v) is the 
normalized power spectrum in the Doppler velocity domain, and the two 
power spectra are related as 

 

    S v S vf( ) ( / )( )= −
2

2
λ

λ .    (5.65) 

   By equating Eq. (5.63) to Eq. (5.64), and assuming all power is confined 
within the Nyquist limits, ± va , it can be concluded that  

 
    p v E S vn( ) [ $ ( )]=   .     (5.66) 
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 1 1-3 change to read: “Thus, for homogeneous turbulence, at least homogeneous 

throughout the resolution volume V6, the expected normalized power 
spectrum is equal to the velocity probability distribution.  Moreover, it is 
independent of reflectivity and the angular and range weighting functions. 

 
 1 3-7 Delete the last two sentences beginning with “Although, in deriving….”  
 
117 2 4-7 Modify these lines to read: “where the terms are due to shear of vs along 

the three spherical coordinates at r0.  In this coordinate system (5.70) 
automatically includes…” 

 
 9 change to read: “the so-called beam-broadening term;....” 

 
117-118; 3  Replace the text in this paragraph up to and including Eq. (5.75) with:       

       “Spherical coordinate shears of vs can be directly measured with the 
radar and it is natural to expressσ s

2
σ s

2in terms of these shears. If the 
resolution volume V6 dimensions are much smaller than its range r0, and 
angular and radial shears are uniform, vs within V6 can be expressed as  

 

v v k r k r k r rrs − ≈ − + − + −0 0 0 0 0 0 0ϕ θθ ϕ ϕ θ θsin ( ) ( ) ( )   (5.71) 

provided θ1 << 1 (radian) and θ0 >> θ1, where 
 

k
r

v
k

r
v

k
v
ro

s

o

s
r

s
ϕ θθ

∂
∂ϕ

∂
∂θ

∂
∂

≡ ≡ ≡
1 1

0sin
, ,      (5.72) 

 
are angular and radial shears of vs.  Angular shears, defined as the velocity 
change per differential arc length (e.g., rosinθ0dφ), are present even if 
Cartesian shears are non-existent, and they are functions of r0.  For 
example, if wind is uniform (i.e., has constant Cartesian components u0, 
v0, w0),   

∂
∂φ

φ φ θ
∂
∂θ

θ φ φ θ
v

u v
v

w u v ks s
r= − = − + =( cos sin ) sin ; sin ( sin cos ) cos ;0 0 0 0 0 0 0 0 0 0 0 0 0 .  (5.73) 

 
If reflectivity is uniform and the weighting function is product separable 
and symmetric about r0, substitution of Eq. (5.71) into Eq. (5.51) produces 

 
22

0
2

0
22

0
222

0
2222

0
2 sin)()( rrsrsss krkrk σθθσσσσσσ φφθθφθ ++=++=r .  (5.74) 

  
 Because lines of constantφ  converge at the vertical, the second central 
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moment σ θφ
2

0( ) of the two-way power pattern is 0
22

0
2 sin/)0()( θσθσ φφ = , 

whereσφ ( )0 is the intrinsic azimuthal beamwidth;σ r
2  is the second central 

moment of |W(r)|2 .  For circularly symmetric Gaussian patterns, 
 

   σ
θ

σ θ
θ

θθ φ= =1
0

1

04 2 4 2
1

ln
; ( )

ln sin
  (5.75) 

 
125 1 1 replace “average” with “expected” 
 

Eq. (6.5) append to this equation the footnote: “In chapter 5 ρ is the complex 
correlation coefficient.  Henceforth it represents the magnitude of this 
complex function.” 

 
4 5 remove the overbar on P, S, and N 

 
126 0 1 change to read: “power estimate $P  is reduced……variance of the Pk..” 
 
 3 2-4 the second sentence, modified to read, “The Pk values of meteorological 

interest...meeting this large dynamic range requirement”, should be moved 
to the end of the paragraph 1 

 
  5 change “ P ” to “ S ”.   
 
127 0 1-2 remove the overbar on P in the three places 
 
 3 1 remove the overbar on Q  
 
  8 delete the citation “(Papoulis, 1965)” 
 
128 1 8 change “unambiguous” to “Nyquist”   
 
 2 4-7 rewrite the second and third sentences after Eq. (6.12) as: “The variance of 

S estimated from M samples is calculated using the distribution given by 
Eq. (4.7) in which S P≡  (this gives, in Eq. (6.10),σQ S2 2= ), and 

calculating MI from Eq. (6.12). Thus the standard deviation of an M-
sample signal power estimate is S M I/ .” 

 
 3 1-2 change to read “To estimate S in presence of receiver noise, we need to 

subtract.....”  
  4-9 remove overbars on S and N 
 
129 0 5-6 change last sentence to read: “....then the number of independent samples 



 8

can be determined using an analysis similar to.....” 
 
130 Table 6.1 add above “Reflectivity factor calculator” the new entry  “Sampling 

rate”, and in the right column on the same line insert “0.6 MHz”. Under 
“Reflectivity factor calculator”,  “Range increment” should be “0.25 
km” and not “1 or 2 km”. But insert as the final entry under “Reflectivity 
factor calculator” the entry “Range interval ∆r”, and on the same line 
insert “1 or 2 km” in the right column. 

 
136   footnote  change to read:  

“To avoid occurrence of negative $S , only the sum in Eq. (6.28) is used but 
it is multiplied with SNR SNR$ / ( $ )+ 1 ” 

 
137 2 1 delete “(σ πvn > 1 2/ )” 
 
155 3 3 in section 6.8.5 line 3, change “Because” to “If” 
 
160 2 6 change “unambiguous velocity ” to “Nyquist velocity” 
 
171 0 3 Ts should be T2 
 
173 0 1 change to read: “…velocity interval ± vm for this….” 
 
 Eq. (7.6b) place ± before vm 
 
 3 9-10 this should read: “…the desired unambiguous velocity interval.  An 

unambiguous velocity interval vm =…”  
 
  11 change “unambiguous” to “Nyquist”  
 
182 Eq.(7.12) WiWi+1 should be WiWi+l 
 
197 1 1 “though” should be “through” 
 
 2 4 “Fig.3.3” should be “Fig.3.2”  
 
200 Fig.7.28 Note the dashed lines are incorrectly drawn; they should extend from -26 

dB at ±2o to -38dB at ±10o, and then the constant level should be at -42 
dB.  

 
201 0 2 “Norma” should be “Norman” 
 
222  Eq. (8.18) the differential “dD” on the left side of Eq.(8.18) must be moved to the 

end of this equation. 
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228 1 4 change Zw to Ze 
 
 Eq.(8.24) this equation should read as: 
 
    Z K K Zi w i e= (| | /| | )2 2      (8.24) 
 
 2 6 change to: “..to estimate the equivalent rainfall rate Rs (mm/hr) from 

the...” 
 
  7 delete “with Zw = Ze” 
 
232 0 10-11 change to: “...a microwave (i.e., λ= 0.84 cm) path, confirmed....” 
 
234 Eq.(8.30) right bracket “}” should be matched in size to left bracket “{” 
 
248 Eq.(8.57) parenthesis “)” needs to be placed to the right of the term “(b/a” 
 
249 Eq.8.58 cos2 δ should be sin2 δ; replace ko with k; pv and ph should be replaced with 

pa and pb respectively 
 
 Eq.8.59a,b change the subscripts “h” to “b”, and “v” to “a” 
 
 2 9 change to read: “pa and pb are the drop’s susceptibility in generating 

dipole moments along its axis of symmetry and in the plane perpendicular 
to it respectively, and e its eccentricity,” 

 
  12-13 rewrite as: “...symmetry axis, and Ψ is the apparent canting angle (i.e., the 

angle between the electric field direction for “vertically” polarized waves 
(v in Fig.8.15) and the projection of the axis of symmetry onto the plane 
of polarization. The forward scattering........” 

 
  17 modify to read: “….fh = k2pb, and fv = k2 [(pa-pb)sin2δ +pb] (Oguchi, .....” 
 
 3 4-5 Rewrite as: “Hence from Eqs.(8.58) an oblate drop has, for horizontal 

propagation and an apparent canting angle equal to zero, the following 
cross sections for h and v polarizations:” 

 
268 Fig. 8.29  LDRhv on the ordinate axis should be LDRvh 
 
 0 1,4 change LDRhv to LDRvh at the two places it appears in this paragraph. 
 
269 Fig. 8.30  In the caption, change LDRhv to LDRvh at the two places it appears. 
 
277 0 16 change “23000” to “230,000” 
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289 2 3 delete the sentence beginning with “In this chapter overbars….” 
 
298 Fig.9.4a,b  here and elsewhere in the text, remove periods in time abbreviations (i.e., 

should be: “CST”, not C.S.T.”) 
 
390  0 1 change to read “along the path l  of the aircraft, and Sij(Kℓ) is the Fourier 

transform of Rij(ℓ). In contrast....” 
 
393 1 11 the subscripts on R11(0) should be changed to Rll(0); (i.e., so that it is the 

same as the subscripts on the second “D “ in line 19). 
 
 Eq. (10.33) place subscript l on C so that it reads Cl.  
 
394 0 1 change to read: “where Cl

2  is a dimensionless parameter with a value of 
about 2.”   

 
 Eq.(10.37) change to read: 

R Rii oi( , ) ( )[ ( / ) ]/ρ τ ρ ρ1
2 30 0 1= = −     (10.37) 

398 1 12 change to read: “…of the weighting function In, and Φv(K) is the spatial 
spectrum of point radial velocities.” 

 
  17 change to read: “…antenna power pattern under the condition, θe = π/2 – 

θ0 <<1, and….” 
 
404 4 7 place an over bar on the subscript “u” in the next to last equation 
 
412 2,3 2,1 delete the word “linear” in these two lines.  
 
 2 5 change “polynomial surface” to “polynomial model” 
 
  7 change “surface” to “model” 
 
419 Fig. 10.18 the “-5/3” dashed line drawn on this figure needs to have a -5/3 slope. 

Furthermore, remove the negative sign on “s” in the units (i.e., m3/s-2) on 
the ordinate scale; this should read (m3/s2). 

 
445 1 6 delete “time dependence of the” 
 
453 1 10 delete “(s)” from “scatterer(s)”; subscript “c” in ρc, | | should be replaced 

with subscript “B” to read ρB, | | 
 

12 a missing subscript on ρ,⊥ should be subscript “B” so the term reads:ρB,⊥  
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Eqs. (11.105, &106) the symbols ||&⊥ should also be subscripts, along with “B”, on the 

symbol “ρ” to read “ρB ,|| ” and “ρB ,⊥ ”. 
 
454 0 6 change “blob” and “blobs” to “Bragg scatterer” and “Bragg scatterers” 
 
 Fig.11.11 caption should be changed to read:  “........, a receiver, and an elemental 

scattering volume dVc.” 
 

456 Eq. (11.115) bold “r” in the factor r)(W  needs to be unbolded 
 
 Fig. 11.12 add a unit vector ao drawn from the origin “O” along the line “r0”. 
 
458 2 4 make a footnote after 2  to read: z′ is the projection of r′ onto the z axis; 

not to be confused with z′ in Fig.11.12 which is the vertical of the rotated 
coordinate system used in section 11.5.4. 

 
459 Eq.(11.125) delete the subscript “c” in this equation, as well as that attached toρch  in 

the second line following Eq.(11.125) so that it reads “ρh ”. 
 
460 1 4-9 delete the third to fifth sentences in this paragraph and replace with the 

following:  
   Condition (11.124) is more restrictive than (11.106); if (11.124) is 

violated the Fresnel term is required to account for the quadratic phase 
distribution across the scattering volume, whereas (11.106) imposes phase 
uniformity across the Bragg scatterer; this latter condition is more easily 
satisfied the farther the scatterers are in the far field (also see comments at 
the end of section 11.5.3).  

 
464 Fig. 11.14  caption: the first citation is incorrect. It should read: “(data are from 

Röttger et al., 1981)”. Furthermore, delete the last parenthetical 
expression: “(Reprinted with permission from ….).” 

 
468 2 11 change “(11.109)” to “11.104”  
 
478 0 7 Change to read: 
   “...the gain g. Then g, now the directional gain (Section 3.1.2), is 

related...” 
 
493 1  delete the last sentence and make the following changes: 
    
   1) change lines 2 and 3 to read: “... Cn

2 = 10-18 m-2/3  (Fig.11.17),  the 
maximum altitude to which wind can be measured is computed from 
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Eq.(11.152) to be about 4.5 km.” 
 
   2) change lines 4 and 5  to read: “…that velocity estimates are made with 

SNR = -19.2 dB (from Eq.11.153 for Ts = 3.13x10-3 s), and that σv  = 0.5m 
s-1, SD(v) = 1 m s-1, and a system temperature is about 200 K (section 
11.6.3).” 

 
 2 1-4 change to read: “Assuming that velocities could be estimated at SNRs as 

low as -35dB (May and Strauch, 1989), the WSR-88D could provide 
profiles of winds with an accuracy of about 1 m s-1 within the entire 
troposphere if Cn

2  values…” 
 

8 change “14” to “12” 
 
9 change “able to measure” to “capable of measuring” 
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SUPPLEMENTS  
 

The following supplements are provided at the indicated places to clarify and/or extend the text 
of “Doppler Radar and Weather Observations”, Second Edition-1993. 

 
Page  Para.   Line Remarks:  Paragraph 0 is any paragraph started on a previous page that 

carries over to the current page. 
 
33 1 4 change to read: …and often its intensity (i.e., power density) versus… 
 
34 0  Note that the one-way radiation pattern of the WSR-88D radar (the 

network radar used by the Weather Service in the USA) is well 
approximated with  

    f
J u

u
J u
u

2 3
3

1
2

248 2 0 32
116( )

. ( ) . ( )
( . )/θ = +

⎛
⎝⎜

⎞
⎠⎟ . 

 
This agrees, down to about the -20 dB level, to within 2 dB of the pattern 
measured for NSSL’s research WSR-88D at a wavelength of 0.111m.  The 
pattern given by this equation is slightly broader (i.e., the 3 dB beamwidth 
calculates to about 1o whereas the measured width is about 0.93o).  This 
analytical expression is that obtained if the reflector’s aperture is 
illuminated with a power density [1-4(ρ/Da)2]4 on a uniform illumination 
level producing at the reflector’s edge a power density 17.2 dB below the 
peak.  The 1st and 2nd  sidelobe levels, calculated from the above 
expression, are 34.2 and 48.4 dB below the peak lobe at about 1.7o and 
2.5o respectively; sidelobes beyond 3o have relatively uniform levels that 
range from 56.3 (at 3o) to 62 dB below the peak lobe at 10o.  Measured 
sidelobe levels (see Fig. 7.28), however, can be anywhere from a few dB 
to about 18 dB larger (the largest difference is at about 3o).  The increased 
measured levels are due to scatter and blockage from the feed and its 
supporting spars, distortions in the surface of the reflector, and scatter 
from objects (i.e., trees, buildings, etc.) on the antenna measurement 
range. Sidelobe levels are even larger (e.g., 25 dB above the theoretical 
level at 3o) along measurement lines perpendicular to the feed supporting 
spars.  But these enhanced levels, due to the blockage of radiation by the 
spars, are confined to relatively narrow angular sectors.  
 

 2 6 If the shape of the radiation pattern of a beam, not necessarily circularly 
symmetric, is well approximated by the product of two Gaussian 
functions, the maximum directional gain is 

 

    
θφσσ

1
=′tg , 
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where 2
φσ and 2

θσ  , assumed to be much smaller than 1 rad2, are the 
second central moments of the two-way pattern expressed in normal form. 
 The two-way pattern is the product of the transmitted radiation pattern 
and the receiving antenna’s field of view pattern. Typically the same 
antenna is used for both functions, and thus the two-way pattern 
is )()( 44 φθ ff .  For the circularly symmetric pattern of the WSR-88D, the 
two-way pattern is }2/exp{)( 224

θσθθ −=f .  In terms of the one-way 3-

dB pattern width 1θ , 2ln4/1θσθ = . 
 

35 1  There are several definitions of cross sections.  For example, σ d
r

i

S
S

r= 2  

is the differential scatter cross section; that is, it is the cross section per 
unit solid angle.  Integration of σ θ φ( , )′ ′ over 4π steradians gives the total 
scatter cross section (see section 3.3). 

 
36 0 2 Insert at the end of the first sentence: “It can be shown, using formulas 

presented in Section 8.5.2.4, that Eq. (3.6) has practical validity only if 
drops have an equivalent spherical diameter De less than 2 mm. Drops 
having De larger than 2 mm have backscatter cross sections differences 
larger than about 0.5 dB for horizontally and vertically polarized waves 
(i.e., σh>1.1σv).” 

38 0 1-2 change to read: “…flows in the forward or backward directions. 
   
 1 4 add at the end of this paragraph: “Furthermore, Probert-Jones (1984) 

demonstrated that internal resonances in electrically large low-loss spheres 
can generate greatly enhanced scatter in both the forward and backward 
directions. 

 
42 Fig. 3.5 Caption: Because there is considerable confusion concerning the use of 

the unit dBZ, and because some writers use dBz for the decibel unit of 
reflectivity factor Z, we present the following comment:  

 
 The logarithm unit decibel, abbreviated dB, is related to the less used unit “bel”, named 
in honor of Alexander Graham Bell (1847-1922).  The dB has been accepted widely as a “unit” 
(e.g., Reference Data for Radio Engineers, 5th Edition, Howard W. Sams, publisher, division of 
ITT, p.3-3).  Appendages to dB have been accepted in the engineering field to refer the dB unit 
to a reference level of the parameter being measured; e.g., dBm is the decibel unit for 10 log10 P 
where P is the power referenced to 1 milliwatt (e.g., Reference Data for Radio Engineers, 5th 
Edition, op. cit., p.3-3).  The parameter dBZ has been accepted by the AMS as the symbol for the 
“unit” decibel of reflectivity factor referred to 1 mm6m-3 (Glossary of Meteorology, 2nd Edition, 
2000, American Meteorological Society). 
 
44 3 4 Blake has more recently published (1986, in “Radar range performance 
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analysis”, 2nd ed., ARTECH House, Norwood, MA.) new values of 
attenuation in gases. For example, at λ = 10 cm, r = 200 km, θe = 0o, the 
two way loss is about 0.3 dB larger than that given in Fig.3.6. 

 
56 Eq. (3.34) If the beam is passing through clouds and storms, Eq. (3.34) should be 

replaced by 
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   where ℓc and Tc are the cloud’s attenuation and temperature. 
 
57 Fig. 3.11 For completeness, the ordinate should be labeled “Sky noise temperature 

Ts (K)” 
 
71 2, 3  An explanation for the √2 factors in Eqs. (4.4) and (4.6) and how power is 

related to σ2 might be helpful.  Because a lossless receiver is assumed, the 
sum of powers in the I and Q channels must equal the power at the input 
to the receiver (i.e., the synchronous detectors in Fig. 3.1).  Because we 
have assumed the amplitude of the echo voltage at the receiver’s input is A 
(e.g., Eq. (2.2b)), the amplitude of the signal in the I and Q channels must 
be A/√2.  Furthermore, we can determine from Eq. (4.5) that the rms 
values of I and Q voltages equals σ (i.e., Irms = Qrms = σ).  Thus the average 
power in each of the channels is σ2, and the sum of the average powers in 
these two channels is 2 σ2 which equals the expected power E[P] at the 
input to the receivers.  The constants of proportionality (i.e., impedances) 
that relate voltage to power are assumed the same at all points in the 
receiver (e.g., at inputs to the I and Q channels). 

 
109 Eq. (5.47) change )( 0rv to E[v(r0)] in this equation and on the last line of this page 

because the overbar designates a spatial average, and Eq. (5.47) is simply 
the mean Doppler velocity.  Eq. (5.48) shows that E[v(r0)] is equal to 

)( 0rv  as stated on the last two lines of this page.  
 
110 Eq. (5.48) change )( 0rv to E[v(r0)], and “= )( 0rv ” at the end of this equation. Then 

add after this equation: “Eq. (5.48) shows that the first moment of the 
Doppler spectrum equals the weighted spatial average of expected 
velocities.” 

 
At the end of section 5.2, add the following paragraph: 
In this section we assumed scatterers follow exactly the air motion. But 
usually scatterers  are hydrometeors that fall in air, have different fall 
speeds because of their different sizes, and change orientation, and vibrate 
(if they are liquid). These hydrometeor characteristics broaden the 
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Doppler spectrum associated with the velocity field 
increasingσ v or

2 ( )r obtained from Eq. (5.51).   
 
118 0  after Eq. (5.75): It should be noted that as θ0 → 0, the angular shears in 

Eq. (5.74) should be replaced by kθ along the two principal axes of the 
beam pattern. For example, if the beam is circular symmetric and θ0 = 0, 
σ σ φ φ π σθ θ θs o r rr k k k2 2 2 2 2 20 2= = + = +[ ( ) ( / )] ( ) . 

 
   After Eq. (5.76): It should be noted that if the receiver bandwidth B6 is 

much larger than the reciprocal of the pulse width τ, σ
τ

r

c2
21

12 2
=

⎛
⎝⎜

⎞
⎠⎟ .  

 
128, Eq.(6.13):  this equation is valid when signal power is much stronger than noise 

power. The following text gives the standard deviation of the Logarithm 
of Z(dBZ) estimates as a function of Signal-to-Noise ratio and could 
replace paragraph 3 on p.128. 

 
 To estimate Z in presence of receiver noise, we need to subtract receiver noise power N 

from the signal plus noise power estimate $P .  Thus the reflectivity estimate is  
$ $ ( $ )Z S P N= = −α α where $P  is a uniformly weighted M sample average estimate of the 

power P at the output of the square law receiver (as in the WSR-88D), N is the receiver noise 
power, and α is a constant calculated from the radar equation. Because N is usually measured 
during calibration, many more samples are used to obtain its estimate. Therefore its variance is 
negligibly small, and the noise power estimate can safely be replaced with its expected value N.  
Z is usually expressed in decibel units; that is, $( ) log $ log ( $)Z dBZ Z S= =10 1010 10 α  where 
$Z is expressed in units of mm6 m-3.  The error in decibel units is now derived. Let $S , the M 

sample estimate of signal power, be expressed as $S S S= + δ  whereδS  is the displacement of  
$S from S. Thus 

For sufficiently larger M, δS S/  is small compared to 1, and hence the second term can be 
expanded in a Taylor series. Retaining the dominant term of the series, the estimated reflectivity 
is well approximated by  
 

$( ) log ( ) log ( )Z dBZ S
S
S

Z Z dBZ= + +
⎛
⎝⎜

⎞
⎠⎟ = +10 10 110 10α

δ
δ   (6.13a) 

 

$( ) .
$

.Z dBZ Z
S
S

≈ + −
⎛

⎝
⎜

⎞

⎠
⎟4 34 1      (6.13b) 
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Because the first term and the constant 4.34 are not random, the standard error in the estimate is 
simply S D Z dBZ. .[ $( )] = 4.34 S D S S. .[ $ / ] . Because $ $S P N= − where N is a known constant (for a 
correctly calibrated radar), S D S S D P P M S N MI I. .[ $] . .[ $ ] / ( ) /= = = + , where MI is the 
number of independent signal plus noise power samples. Hence 
 

S D Z dBZ
S N

S M I

. .[ $( )]
. ( )

=
+4 34

    (6.13c) 

 
The number of independent samples MI that are contained in the M sample set, can be calculated 
from (6.12) in whichρs smT( ) is replaced by ρs n smT+ ( ) the magnitude of the correlation 
coefficient of the signal plus noise samples. 

Using (6.4), the correlation of signal plus noise for a Gaussian shaped signal spectrum 
and a white noise spectrum, normalizing it by S + N to obtain the correlation coefficient of the 
input signal plus noise power estimates, the correlation coefficient at the output of the square law 
receiver, can be written as 
 

ρ σ π δs n s vn mmT
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N
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− +
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  (6.13d) 

 
Under the condition thatσ vn M>> −1 , (i.e., the spacing between spectral lines is much smaller 
than the width of the spectrum), the sum in (6.12) can be replaced by an integral. Furthermore, if 
M is large so thatρs n smT+ ( )  is negligibly small at MTs, the limits on the integral can be extended 
to infinity. Evaluation of this integral under these conditions yields 
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    (6.13e) 

The formula for calculating the standard error in estimating Z(dBZ) as a function of S/N is 
obtained by substituting (6.13e) into (6.13c) yielding  
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  (6.13f) 

 
 
136 4 1-5 The form of Eq.(6.29) was first presented by Rummler (1968). But this 

form does not follow directly from Eq.(6.27) as in stated in the sentences 
preceding Eq.(6.29). Thus it would be more proper to change these lines 
to read: 
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 “If spectra are not Gaussian, Rummler (1968) has derived an 
estimator valid for small spectrum widths (i.e.,σ vn << 1). This estimator is 

 
 (6.29) 
 

  At large widths Eq. (6.29) has an asymptotic (M → ∞) negative bias 
which causes an underestimate of the true spectrum width (Zrnić, 1977b), 
whereas ....... spectrum is Gaussian)” 

 
Added Reference: 
 
Rummler, W. D. (1968), Introduction of a New Estimator for Velocity Spectral Parameters. 

Technical Memorandum, April 3, 1968. Bell Laboratories, Whippany, New Jersey 07981. 
 
 
255 1 2 Recent data from a disdrometer show as much as a factor of 3 error 
 
391 0 2 it should be noted that the correlation scale ρ0 is not the same as the 

integral scale ρI which is defined as 
 

    ρ
ρ

ρI =
∞

∫
R
R

d
( )
( )00

 

   For the correlation function given by Eq. (10.19), ρ0 is related to ρI  as 
 

    ρ ρI =
+Γ Γ
Γ

( . ) ( . )
( )

v
v

05 05
0  

 
398   Section 10.2.1: we introduce the parameter Mv(K) in Eq.(10.46) but define 

it later in Eq.(10.46). We should place Eq.(10.48), but label it (10.46), 
before Eq.(10.46) that now become Eq.(10.47). Other adjustments should 
be made to correct equation numbers; these should be few. 

 
403 1 6 For a fuller explanation of the steps in Section 10.2.2, and using notation 

consistent with that used earlier in the text, we offer the following revision 
of section 10.2.2: 

 
  In this section we define the relationship between the variance of radial velocities 

at a point and the expected spectrum width measured by radar (Rogers and Tripp, 1964).  
Let the variance of the radial velocity v(r, t) at a point beσ p

2 .  This variance is the sum of 
the variance at all velocity scales and is defined by the equation, 

 
  σ p

2 2 2( ) [ ( , )] [ ( , )]r r r= −E v t E v t    (10.55) 
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where E[x] indicates an expectation, or an average over an ensemble of velocity fields, all 
having the same statistical properties.  Assume that steady wind is not present (or that it 
can be determined and was removed), the radar beam is fixed, hydrometeors do not 
oscillate or wobble and are perfect tracers of the wind (i.e., terminal velocities and drop 
inertia can be ignored).  In this case, turbulence is the only mechanism contributing to 
spectral broadening, and its radial velocity component is a random variable having a zero 
mean (i.e., E[v(r, t)] = 0).   

  The second central moment,σ v
2 , of the Doppler spectrum associated with 

turbulence can be obtained from Eq. (5.51).  Although Eq. (5.51) was derived under the 
assumption that v(r, t) is steady, this equation can be applied to the time varying wind 
produced by turbulence.  But then σ v

2  would be a time varying quantity because v(r, t) is 
now a time dependent variable.  Thus, from Eq. (5.51) replacingσ σv

2 2→ t  for pure 
turbulence, we obtain,  

 
 [ ] 2222 ),(),(),(),(),( tvtvtvtvtt rrrrr −=−=σ ,    (10.56) 

 
where ),(2 tt rσ  is the expected radar-measured instantaneous second central moment of 
the Doppler spectrum associated with turbulence.  The overbar denotes a spatial average 
weighted by the normalized function Hn ( , )r r0  where 
  

  H
I

I dV
n ( , )

( , ) ( )

( , ) ( )
r r

r r r

r r r
0

0

0

=
∫∫∫

η

η
, 

is a combination of reflectivity and antenna pattern weights.  Note that ),(2 tt rσ  is the 
expected instantaneous second central moment of the Doppler spectrum for signals from 
an elemental scattering volume at r.  In this case, however, the expectation is over 
ensembles of scatterers that have the same velocity field but have slightly different (i.e., 
on the order of a quarter of a wavelength) spatial locations, whereas the expectation in 
Eq. (10.55) is understood to be taken over ensembles of velocity fields.  That ensemble 
averages can also be made over various configurations of scatterers has been shown by 
Doviak and Zrnic (1993, p.108).  That is, if v(r, t) is the actual velocity field at 't', and 
v t( , )r  is the ),( 0 rrnH weighted spatial average, expectations can be made, at least in 
theory, over ensembles of scatterer locations.   
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 For example, an estimate of the “instantaneous” value v t( , )r  can be obtained 
from a pair of weather echoes about a millisecond apart (for 10 cm wavelength radars); 
during this short interval the turbulent velocity field can be considered to be frozen.  If, 
for the same velocity field, a different configuration of scatterers is created, another 
independent estimate of v t( , )r  can be calculated.  In this case the ensemble is the various 
configurations of scatterer locations for the same ),( tv r .  Thus v t( , )r  is defined as an 
expected instantaneous value wherein the expectation is made over various 
configurations of scatterers.  It follows that ),( tv r  is a random variable.  Similar 

arguments and conclusions apply as well to ),(2 tt rσ .  Thus, even if turbulence were 
statistically stationary, ),(2 tt rσ  would be a function of time.  Usually we are not 

interested in the time dependence of ),(2 tt rσ , but in its statistical properties such as its 

mean or expected value, [ ]),(2 tE t rσ , its auto-correlation, etc.  We shall show how 

[ ]),(2 tE t rσ  is related to the energy density E of turbulence. 

  The variance of the spatially weighted Doppler (i.e., radial) velocity v t( , )r is, by 
definition, given by 
 
  [ ] [ ] [ ] 222

),(),(),(var vtvEtvEtv σ≡−≡ rrr    (10.57a) 
 
 or, because [ ]),( tvE r  = 0, 

 
   [ ]22 ),( tvEv r=σ ,     (10.57b) 

  
where the expectation is over ensembles of velocity fields, or over time.  Even if 
turbulence is statistically stationary, v t( , )r  is still a time varying quantity, although its 
varianceσ v

2  is not.  
 It should also be noted that σ v

2  does not include the variance associated with the 

statistical uncertainty in the radar estimates of v t( , )r  (nor does ),(2 tt rσ  include statistical 
uncertainties associated with radar estimation).  That is, in addition to the variance of 
v t( , )r  due to the time changing velocity field, we have additional variance associated 
with the random location of scatterers (i.e., the time dependence of v t( , )r  differs from 
the time dependence of the v t( , )r estimates).  For example, even if v(r, t) was a constant 
independent of time, and therefore v t( , )r would be a constant, the radar estimates of 
v t( , )r  would be random due to the fact that scatterers can have different locations for the 
same velocity field; each configuration of scatterers would produce a different weather 
signal sample from which v t( , )r  is estimated.   
 To illustrate, assume a constant wind that carries scatterers perpendicularly across 
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all azimuths.  In this case v t v( , ) ( )r r= = 0, and v( )r = constant = c = 0.  Nevertheless, 
estimates $c  of v( )r  are time varying and random because v( )r is estimated from weather 
signals which are randomly varying; this is so because the scatterers’ configuration 
within V6 is continually changing.  That is, although v( )r  = 0, the Inphase, I, and 
Quadrature phase, Q, components of the weather signal are still Gaussian distributed 
random variables as shown in Fig. 4.4a.  Because the mean Doppler velocity is zero, the 
time sequence of I, Q samples will randomly shift in the I, Q plane, but there would be no 
mean rotation about the origin (contrary to that suggested by Fig. 4.4a).  The shifts of the 
 I, Q samples are relatively smooth if the sample time spacing Ts is short compared to the 
correlation timeτ c  of the weather signals.   The correlation time τ c  is not necessarily 
equal to the correlation time of the velocity field.  The velocity estimates, calculated from 
the sequence of I, Q samples, form a sequence of random variables.  The velocity 
estimates would be uncorrelated if the dwell time (i.e., the data collection time to make a 
velocity estimate) is longer thanτ c , and the samples do not overlap.  The infinite time 
average of these velocity estimates would be equal to 0, as would the ensemble average 
over the infinite configurations of scatterers.  These arguments, applied to the radar 
estimates of v t( , )r , can also be applied to show that the expected value of the radar 

estimates of ),(2 tt rσ  equals ),(2 tt rσ .  
  By taking the ensemble (ensemble of velocity fields) average of Eq. (10.56), 

substituting Eq. (10.57b) into it, we obtain, after commuting ensemble and spatial 
averages (i.e., [ ] )],([),( 22 tvEtvE rr ≡ ), 
 
 [ ] )],([),( 222 tvEtE vt rr =+σσ      (10.58a) 

  
 The weighted spatial average of )],([ 2 tvE r  is, by definition, 
 
   ∫=

V
n dVHtvEtvE ),()],([)],([ 0

22 rrrr    (10.58b) 

 
  If turbulence is homogeneous (i.e., )]([)],([ 22 tvEtvE =r ) over the region where 

the weighting functions contribute significantly (i.e., turbulence is locally homogeneous), 
Eq. (10.58b) shows that )],([ 2 tvE r   = E[v2(t)].  Substituting this latter relation into Eq. 
(10.58a), and using Eq. (10.55), we obtain 

 

    [ ]{ }2222 ),(
22

1)]([
2
1

vtpr tEtvE σσγγσγ +=== rE   (10.59) 

where rE  is the radial component of turbulent energy density at a point, and γ  is the air 
mass density.  If turbulence is isotropic, the total turbulence energy density E = 3 E r.   
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 Eq. (10.59) shows that the energy density of turbulence can be calculated from the 
sum of the expected value of the second moment of the Doppler spectrum associated with 
turbulence, [ ]),(2 tE t rσ , and the variance, [ ]22 ),( tvEv r=σ , of the mean Doppler velocities. 
 For stationary and/or globally homogeneous turbulence, the expectations can be obtained 
from averages over time and/or space (i.e., at different r0 locations). The variance 2

vσ  
does not include the variance associated with the statistical uncertainty of the estimates of 
v t( , )r due to processing a finite number of weather signal samples.   

  The relation Eq. (10.59), between the radial component of the turbulent energy 
density at a point and the second central moment of turbulence spectra, requires 
turbulence to be locally homogeneous although not isotropic.  Therefore, the point under 
discussion is, in reality, a collection of points over the entire resolution volume wherein 
turbulence is assumed to have the same statistical properties at each point.   

  In addition to being proportional to turbulent kinetic energy, the variances 
[ ]),(2 tE t rσ  and 2

vσ  have relative magnitudes that depend on how turbulent energy is 
partitioned between sub resolution volume scales and scales larger than the resolution 
volume. By combining these two variances, there is no filtering of the turbulent energy. 

 
439 0 9 because section 11.4.1 is titled “Bragg scatter”, it is appropriate to define 

and use this term in this section.  Therefore change this line to read: “.. to 
the scattered signal (i.e., Bragg scatter) occurs if..” 

 
443 section 11.4.3 to differentiate the commonly known Bragg scatter associated with steady 

or deterministic perturbations from that Bragg scatter associated with 
random perturbations, we introduce the term “Stochastic Bragg Scatter” 
by replacing the second sentence of this section with:  

 
   “Perturbations in atmospheric refractive index are caused by temperature 

and humidity fluctuations; thus the perturbation in n is a random variable 
having a spectrum of scales.  Although there is a spectrum of spatial 
scales, only those at about the Bragg wavelength ΛB = λ/[2sin(θs/2)] 
contribute significantly to the backscattered power.  Because scatter is 
from spatial fluctuations in refractive index, the scattering mechanism is 
herein defined as Stochastic Bragg Scatter (SBS). Because there are 
temporal fluctuations as well, the scattered power is also a random 
variable and its properties are related to the statistical properties of the 
scattering medium. In this section we relate the expected…..(return to the 
3rd sentence in the text)” 

 
459 Eq. (11.124) this equation assumes that the beam width is given by Eq. (3.2b).  A more 

general form is  
 



 23

    ρ
πγ

θ γ
λ

⊥ = =
D

D
a

a

2

1
1 1,  

 
556at the end of this paragraph, “...in this section.”, add: “Under far field conditions the 

beamwidth part of the “resolution volume weighting” term in Eq.(11.122) does not 
contribute significantly to the integral, but beamwidth and range resolution do 
contribute to the backscattered power because they multiply the integral in 
Eq.(11.122).” 

 
460 0 2 add the following sentence at the end of the line: 
   ρh is the outer scale of the refractive index irregularities, but condition 

(11.124) applies to the transverse correlation lengths of the Bragg 
scatterers. Thus, the conclusion reached in this paragraph applies if the 
Bragg scatterer’s correlation length equals the outer scale. 

 
461 0 11 insert after “...in space.”: “This is a consequence of the greater importance 

of the Fresnel term relative to the resolution volume weighting term (i.e., 
in Eq.11.122) along the transverse directions.” 

 
478 0 7 rewrite the sentence: “Then g, now the directional gain (section 3.1.2) is 

related to…” 
 
513 3 4 rewrite as: “…independent of all others because the shell is assumed to be 

many wavelengths thick and scatterers are randomly placed in the shell. 
 
547  Index  add: “Antenna; far field, 435-436, 459” 
 
548 Index  add: “Bright band, pp. 256, 268”  
 
554 Index  add “Melting layer, pp. 225, 255”  
 
556 Index  for the entry “Radome losses” add page 43. 
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Some definitions: 
 
Radial:  A radial is the center of a band of azimuths over which the radar beam scans 

during the period (i.e., the dwell time) in which a number M of pulses are 
transmitted and echoes received and processed. M echo samples at each range are 
processed to obtain spectral moments (e.g., reflectivity, velocity, and spectrum 
width) that are assigned to the center azimuth (i.e., the “radial”). A “radial of 
data” is usually the set of spectral moments at all the range gates (or resolution 
volumes) along the assigned azimuth. 

 


